Subthreshold cascade production in heavy ion collisions

L. Feng, L.W. Chen, ${ }^{1}$ C.M. Ko, and S.H. Lee ${ }^{2}$
${ }^{1}$ INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{2}$ Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

We have calculated the cross sections for the reaction $\mathrm{YY} \rightarrow \mathrm{N} \Xi(\mathrm{Y}=\Lambda, \Sigma)$ based on a gauged $\mathrm{SU}(3)$-invariant hadronic Lagrangian in the Born approximation [1] and found that these cross sections are almost four times the cross sections for the reaction $\mathrm{KY} \rightarrow \pi \Xi$ that was considered in a previous study [2]. We then used these cross sections to study Ξ production in ${ }^{40} \mathrm{Ar}+\mathrm{KCl}$ collisions at the subthreshold energy of 1.76 AGeV within the framework of a relativistic transport model that includes explicitly the nucleon, delta, pion, and perturbatively the kaon, antikaon, hyperons, and Ξ [3]. We found that the reaction $\mathrm{YY} \rightarrow \mathrm{N} \Xi$ would enhance the abundance by a factor of about 16 compared to that from the reaction $\mathrm{KY} \rightarrow \pi \Xi$, resulting in an abundance ratio $\Xi^{-} /\left(\Lambda+\Sigma^{0}\right)=3.38 \times 10^{-3}$ that is essentially consistent with that measured by the HADES Collaboration at GSI [4]. Our study has thus helped in resolving one of the puzzles in particle production from heavy ion collisions at subthreshold energies.

FIG. 1. Left window: Cross sections for (a) $\Lambda \Lambda \rightarrow \mathrm{N} \Xi$, (b) $\Lambda \Sigma \rightarrow \mathrm{N} \Xi$, (c) $\Sigma \Sigma \rightarrow \mathrm{N} \Xi$, (d) $\mathrm{N} \Xi \rightarrow \Lambda \Lambda$, (e) $\mathrm{N} \Xi \rightarrow \Lambda \Sigma$, and (f) $\mathrm{N} \Xi \rightarrow \Sigma \Sigma$ as functions of the center-of-mass energy from the Born approximation with cutoff parameters $\Lambda=0.5 \mathrm{GeV}$ (dashed lines), $\Lambda=0.7 \mathrm{GeV}$ (solid lines), and $\Lambda=1 \mathrm{GeV}$ (dotted lines). Right window: Time evolutions of (a) central baryon density (right scale) and the abundances (left scales) of π and Δ, (b) K, Λ, Σ, and antikaon, and (c) Ξ produced from different reactions.
[1] F. Li, L.W. Chen, C.M. Ko, and S. H. Lee, Phys. Rev. C 85, 064902 (2012).
[2] C.H. Li and C.M. Ko Nucl. Phys. A712, 110 (2002).
[3] C.M. Ko and G.Q. Li, J. Phys. G 22, 1673 (1996).
[4] N. Kaiser and W. Weise, Phys. Lett. B 512, 283 (2001).

